
In the last four columns we have
examined the process of writing

our own visual and non-visual
components, components based
on DLL engines, and adding cus-
tom bitmaps and component help
files. This time, we’ll focus on
adding custom events and event
handlers to our components.

Signallers And Handlers
Events consist of two parts: an
event signaller and the event
handler. The signaller must make
sure that the component somehow
gets a message of some sort to
indicate that some condition has
become true and that the event is
now born. The event handler, on
the other hand, starts to work only
after the event itself is generated
and responds to it by doing some
processing of itself.

Event signallers are typically
based on virtual (or dynamic)
methods of the class itself (like the
general Click method) or Windows
messages, such as notification
messages. Event handlers are typi-
cally placed in event properties,
such as the OnClick or OnChange
event handler property. If event
handlers are published, the user of
the component can enter some
event handling code that is to be
executed when the event is fired.

Event Handlers
Event Handlers are methods of
type Object. This means that they
can be assigned to class methods,
and not to ordinary procedures or
functions (the first parameter must
be a Self type of thing). Consider
the type TNotifyEvent for the most
general of event handlers:

TNotifyEvent =
 procedure(Sender: TObject)
 of object;

The TNotifyEvent type is the type

Under Construction:
Custom Events
by Bob Swart

for events that have only the
sender as parameter. These events
simply notify the component that a
specific event occurred at a
specific TObject (the sender). For
example, OnClick, which is type
TNotifyEvent, notifies the control
that a click event occurred on the
control Sender. If the parameter
Sender were omitted as well we’d
only know that a specific event had
occurred, but we’d not know to
which control it had occurred.
Generally, we do want to know for
which control the event just
occurred, so we can act on the
control (or on data in the control).

As mentioned before, event
handlers are placed in event prop-
erties, and they appear on a sepa-
rate page in the Object Inspector
(to distinguish them from the
‘normal’ properties). The basis on
which the Object Inspector
decides to split these two kinds of
properties is the procedure/
function of Object part of the
declaration. The of Object part is
needed as we get the error
message ‘cannot publish property’ if

we omit it, as you can see in
BOBEVENT.PAS in Listing 1. So, the
event page only shows true event
handlers, ie methods that are
of object, and not just function
pointers.

Event Signallers
Event signallers are needed to
signal to an event handler that a
certain event has occurred, so the
event handler can perform its
action. Event signallers are
typically based on virtual (or
dynamic) methods of the class
itself (like the general Click
method) or Windows messages,
such as notification messages.

In order to give an example of an
event signaller, we need an event
handler to talk about. Let’s exam-
ine the standard class TListBox
from Delphi’s VCL. This listbox has
several event handlers: OnClick,
OnDblClick, OnDragDrop, etc. I
couldn’t find an OnChange event
handler, however, and this might
be one I’d want to use more from
day to day than an event handler
like OnKeyUp or OnMeasureItem. Why

unit BobEvent;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls;
type
 TEventNoObject = procedure;
 TEventOfObject = procedure of Object;
 TEventComponent = class(TComponent)
 private
 { Private declarations }
 FEventNo: TEventNoObject;
 FEventOf: TEventOfObject;
 published
 { Published declarations }
 property OnEventNoObject: TEventNoObject read FEventNo write FEventNo;
 { error: this property cannot be published }
 property OnEventOfObject: TEventOfObject read FEventOf write FEventOf;
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponents(’Dr.Bob’, [TEventComponent])
end;
end.

➤ Listing 1

32 The Delphi Magazine Issue 5

unit ListBob;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls;
type
 TChangeEvent = procedure(Sender: TObject; PrevItemIndex: Integer) of
 Object;
 TListBob = class(TListBox)
 private
 { Private declarations }
 FPrevItemIndex: Integer;
 FOnChange: TChangeEvent;
 protected
 { Protected declarations }
 procedure Click; override;
 public
 { Public declarations }
 constructor Create(AOwner: TComponent); override;
 published
 { Published declarations }
 property OnChange: TChangeEvent read FOnChange write FOnChange;
 end {TListBob};
procedure Register;
implementation

constructor TListBob.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FPrevItemIndex := -1 { default: no selection }
end {Create};

procedure TListBob.Click;
begin
 inherited Click;
 if FPrevItemIndex <> ItemIndex then
 if Assigned(FOnChange) then FOnChange(Self, FPrevItemIndex);
 FPrevItemIndex := ItemIndex
end {Click};

procedure Register;
begin
 RegisterComponents(’Dr.Bob’, [TListBob]);
end;
end.

➤ Listing 2

was OnChange omitted? I don’t
know, but it’s a good thing Borland
keeps providing me with these
kinds of examples (thanks guys!).

OnChange
Before we just define our OnChange
event, let’s examine the VCL
source code, to find out if OnChange
is already present (and just not
published). That might have been
the easiest approach. Unfortu-
nately (or fortunately, depending
whether you’re the reader or
writer of this article), this is not the
case, so we indeed have to create
our own OnChange event handler
and signaller for TListBox!

The OnChange event handler
needs information about who
(which listbox class) it is that has
just received an OnChange message,
so we need to have the so-called
Sender. I would also like to know the
previously selected item from the
listbox (so I can compare it to the
current ItemIndex, and see if we’re
currently walking up or down –
might come in handy one day). If
we need these two parameters,
then our TChangeEvent type will
look like the following definition
(note the of Object part):

type
 TChangeEvent =
 procedure(Sender: TObject;
 PrevItemIndex: Integer)
 of Object;

TChangeEvent is just the type for the
OnChange property; the property
itself needs to be defined in a
derived class of TListBox, including
the private field FOnChange. But let’s
first concentrate on the event
signaller.

Changed
Now, what can we use as an
OnChange event signaller? In order
to answer that question, we have to
think of the different possible
causes of this event. When will the
position of a listbox change? Well,
if the user just performed a key-
board or mouse action, then the
position could have changed, for
instance. And those keyboard and
mouse actions already generate an
OnClick event, so perhaps we can

chain to that. All we need to do to
find out whether or not the
position has really changed is to
keep track of the old position and
compare it with the new position as
soon as we get the Click notifica-
tion message. Since we wanted to
keep track of the previous position
anyway (the PrevItemIndex), this
shouldn’t be a problem. We just
have to add a private field
FPrevItemIndex of type Integer to
our derived TListBox, initialise it to
-1, and set it to the current position
after each change (ie at the end of
each OnChange event).

Reading the VCL source code
again, it turns out that the OnClick
event handler itself is fired by the
dynamic method Click of TListBox
(which is defined at the TControl
level, by the way). If we just
override the Click method, we can
fire the OnChange event (as well as
performing the default behaviour,
which will be firing the OnClick
event).

TListBob
I’ve named the new listbox class
TListBob for now and the new class
definition can be seen in Listing 2.

Testing, 1, 2, 3...
If we add this component to our
component palette, drop it on a
form, and try to connect some code
to the OnChange event handler, then
everything seems to work as
expected. If we click with the
mouse on another item in the
listbox, or we use the keyboard
keys to select a new item, the On-
Change event is fired whenever the
position changes. Wonderful, it
seems.

‘Seems’, is right, because we’re
not done yet (it would be a short
column this month if we were,
wouldn’t it?). There is another
situation that can cause the
current position of the listbox to
change and we didn’t think of it
before. Borland provides us with
all those handy properties, like the

January 1996 The Delphi Magazine 33

ItemIndex which indicates the
index of the current selected item,
or the current position in the list-
box. Unfortunately, for TListBob
this property is not read-only, but
can be used to programmatically
set the selected position:

with ListBob1 do
 ItemIndex := ItemIndex + 1;

Since this statement will surely not
cause the Click method to fire, we
won’t get the Change signal and
hence the OnChange event handler
will not be executed. We were
close, but no cigar!

WM_SetCurSel
So, we need another way to ensure
that we’re notified when the
current selection of the listbox is
set to another value. Fortunately,
Windows itself provides us with
this notification mechanism, as a
WM_SETCURSEL message is fired
whenever someone tries to set the
current selection of a listbox. If we
just listen for this message, we can
fire the OnChange event right after
the message itself, see Listing 3.

Note that in this case we don’t
even have to check if the ItemIndex
has indeed changed from before to
after the call, since Windows will
make sure for us the message is
only sent on a WM_SETCURSEL (and
that one will only be fired if it is
actually necessary, not when the
desired position was actually
already selected – it seems we
actually benefit from some
Windows optimisations for a
change!). We do have to save the
new position (ItemIndex) to our
own saved FPrevItemIndex here as
well, of course.

Two Event Signallers
Time for our second attempt at
TListBob, one with two event signal-
lers (Click and WMSetCurSel) and
one event handler (FOnChange): see
Listing 4.

Now we’re in back business. The
position in the listbox can be
changed by the keyboard, mouse
or programmatically, and we still
manage to keep track of the
changes. To illustrate this, I’ve
written a little test that keeps the

unit ListBob;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls;
type
 TChangeEvent = procedure(Sender: TObject; PrevItemIndex: Integer) of
 Object;
 TListBob = class(TListBox)
 private
 { Private declarations }
 FPrevItemIndex: Integer;
 FOnChange: TChangeEvent;
 protected
 { Protected declarations }
 procedure Click; override;
 procedure WMSetCurSel(var Message: TMessage); message LB_SETCURSEL;
 public
 { Public declarations }
 constructor Create(AOwner: TComponent); override;
 published
 { Published declarations }
 property OnChange: TChangeEvent read FOnChange write FOnChange;
 end {TListBob};
procedure Register;
implementation

constructor TListBob.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FPrevItemIndex := -1 { default: no selection }
end {Create};

procedure TListBob.Click;
begin
 inherited Click;
 if FPrevItemIndex <> ItemIndex then
 if Assigned(FOnChange) then FOnChange(Self, FPrevItemIndex);
 FPrevItemIndex := ItemIndex
end {Click};

procedure TListBob.WMSetCurSel(var Message: TMessage);
{ if someone assigns a new value to ItemIndex }
begin
 DefaultHandler(Message);
 if Assigned(FOnChange) then FOnChange(Self, FPrevItemIndex);
 FPrevItemIndex := ItemIndex
end {WmSetCurSel};

procedure Register;
begin
 RegisterComponents(’Dr.Bob’, [TListBob]);
end;
end.

➤ Listing 4

procedure TListBob.WMSetCurSel(var Message: TMessage);
{ if someone assigns a new value to ItemIndex }
begin
 DefaultHandler(Message);
 if Assigned(FOnChange) then FOnChange(Self, FPrevItemIndex);
 FPrevItemIndex := ItemIndex
end {WmSetCurSel};

➤ Listing 3

text of a TEdit up-to-date whenever
a change in the TListBob occurs
(and hence the OnChange event is
fired): see Figure 1.

Example
The relevant parts of code are
shown in Listing 5. First we have
the ListBox1Change to actually
update the TEdit.Text and then the
four speedbutton event handlers

to programmatically update the
selection in the listbox.

Conclusion
We’ve seen that adding custom
events to our Delphi components
actually consists of two steps:
adding event handlers (properties
and types) and event signallers to
fire the handlers. The TListBox
component provided us with a nice

34 The Delphi Magazine Issue 5

example to extend with the
OnChange event.

Full code for the TListBob compo-
nent and this example program is
provided on the free disk this
month, of course. Actually, the
TListBob component on disk has
another extra feature: automatic
tabstop settings, so check it out.

Also on the disk is Version 2.0 of
TBUUCode, the UUCode component for
which we developed on-line
component help last issue. It
appears that I left two subtle bugs
inside the 1.0 code, so to make it up
to you I’ve included the new source
code on disk – and guess what have
been added to this component? An
OnError and OnSuccess event
handler, thanks to this month’s
column, of course...

Next Time
From now on, we’re going to
expand this column to include the
creation of Delphi experts (IDE
experts, that is, not self-
proclaimed experts!) as well as
components, since this is an area
which many developers are inter-
ested in and (as you have found
from my article in Issue 3) is not so
difficult as you might think!

In the next issue, we’ll be focus-
ing on so-called property editors,
like the one for glyphs on TBitBtn
components, and will find out what
property editors have in common
with experts and components, and
how we can write our own custom
property editors for our own
components and even for existing
components!

Stay tuned, and make sure you’ve
always got a backup of your
COMPLIB.DCL in a safe place!

Bob Swart (you can email him at
100434.2072@compuserve.com) is
a professional 16- and 32-bit
software developer using Borland
Pascal, C++ and Delphi. In his spare
time, he likes to watch video tapes
of Star Trek Voyager with his 1.75
year old son Erik Mark Pascal.

procedure TForm1.ListBob1Change(Sender: TObject; PrevItemIndex: Integer);
begin
 Edit1.Text := Listbob1.Items[Listbob1.ItemIndex]
end;

procedure TForm1.SpeedButton1Click(Sender: TObject);
begin
 Listbob1.ItemIndex := 0
end;

procedure TForm1.SpeedButton4Click(Sender: TObject);
begin
 Listbob1.ItemIndex := Pred(Listbob1.Items.Count)
end;

procedure TForm1.SpeedButton2Click(Sender: TObject);
begin
 if Listbob1.ItemIndex > 0 then
 Listbob1.ItemIndex := Listbob1.ItemIndex - 1
end;

procedure TForm1.SpeedButton3Click(Sender: TObject);
begin
 if Listbob1.ItemIndex < Pred(Listbob1.Items.Count) then
 Listbob1.ItemIndex := listbob1.ItemIndex + 1
end;

➤ Listing 5

➤ Figure 1:
TListBob
in action

Would you like to tell Delphi
users in 37 COUNTRIES all about
your great new Delphi add-on?

OF COURSE YOU WOULD!
This space could be making sales for YOU if your advert was here!

We can produce your artwork and it needn’t cost a fortune either:

prices start from just £60 for a single insertion, with good series

discounts. To find out more contact us using the details on Page 66.

January 1996 The Delphi Magazine 35

	Signallers and Handlers
	Except Handlers
	Event Signallers
	OnChange
	Changed
	TListBob
	Testing 1, 2, 3..
	WM_SetCurse1
	Two Event Signallers
	Example
	Conclusion
	Next Time

